


## **SP 3 Sustainability of the Energy Transition**

Witold-Roger Poganietz & Yolanda Lechón





## Motivation



Aim of SP 3: Assessing of the energy transition

#### Challenges

 Comprehensive description and analysis of future energy systems and their pathways or of technologies
scenario creation and analysis

- Comprehensive sustainability assessment
  - Defining and assessing indicators
  - Assessing the sustainability of future energy systems, pathways or technologies

## **Sustainability**

Aim of transformation process: Establishment of a climate-neutral and sustainable energy system

#### What means sustainability?

- "Sustainable development is [a] development that meets the needs of the present without compromising the ability of future generations to meet their own needs."
- Systemic and systematic conflicts between two generations, at least
- Sustainable Development Goals (SDGs)
  - 17 Goals with each goal with 8-12 targets and each target with 1-4 indicators
  - conflicting aims are likely, even only SDG Energy is considered

## **EERA** Main question: how to deal with conflicting aims while developing sustainability strategies?



## **Multicriterial Decision Approach**

Need for approaches to assess and settle conflicting aims: Multicriterial Decision Approach (MCDA)

#### General idea

Goals are weighted along societal preferences and necessities

#### Challenges

- How to weight goals?
- How to combine quantitative with qualitative indicators?





## Multicriterial Decision Approaches

## **Multicriterial Decision Approaches**

Multi Objective Decision Making (MODM) vs. Multi Attribute Decision Making (MADM)

- Multi Objective Decision Making (MODM)
  - decision between a continuous number of alternatives: Optimization of an objective function
    - Objective function w/o or w/ explicit weighting
      - $\blacktriangleright \min\left(\sum_{k=1}^{l} F_k(x) : x \in X\right)$
      - $\min(\sum_{k=1}^{l} |F_k(x) z^*| : x \in X)$  where:  $z^* = (z_1^*, ..., z_l^*)$ , i.e., the respective unconstrained optimum for each indicator

      - $\min(\sum_{k=1}^{l} w_k F_k(x) : x \in X)$ , where  $0 < w_k < 1$  and  $\sum_{k=1}^{l} w_k = 1$
      - Lexicographical method
    - Pareto Curve

**•** ...

## **Multicriterial Decision Approaches**

#### Multi Attribute Decision Making (MADM)

#### - decision between (discrete number of) alternatives

- Classical approaches ("Decision maker know their preferences")
  - Weighted sum method
  - Analytical Hierarchy method
- Outranking approaches
  - ("Decision maker don't know their preferences,
  - but could compare alternatives")
    - "Elimination Et Choix Traduisant la Réalité" (ELECTRE)
    - "Preference Ranking Organisation Method for Enrichment Evaluations" (PROMETHEE)
- Miscellaneous
  - "Technique for Order of Preference by Similarity to Ideal Solution" (TOPSIS)
  - "VIseKriterijumska Optimizacija I Kompromisno Resenje" (VIKOR)

## **Multicriterial Decision Approaches**

#### <u>Challenges</u>

#### Weighting of goals, targets or indicators

- Non-Weighting is no solution
- Econometric approaches to estimate weighted preference functions
- Typification of perspectives, e.g. individualist, hierarchist, egalitarian
- Involvement of experts, stakeholder, citizens

#### Combining quantitative with qualitative information

- Not every information is prima facie quantifiable, e.g. participation options
- Defining appropriate data / numbers
- Ranking of alternatives, with translating the result in numbers



## Example: Sustainability assessment of regional energy scenarios

# Sustainable assessment of the future energy system of the district Steinburg, Germany

#### District Steinburg:

- North-west of Hamburg, North Germany
- 130,000 inhabitants
- Long tradition in generating electricity (nuclear power plants)
- Four different possible future energy systems in 2050, derived from regionalized national scenarios
- Local energy system contains
  - Energy generation
  - Transport within and through the district
  - Storage
  - Use within and outside (export)
- Aim: Sustainability assessment of the local energy system, considering local and induced upstream impacts on global scale

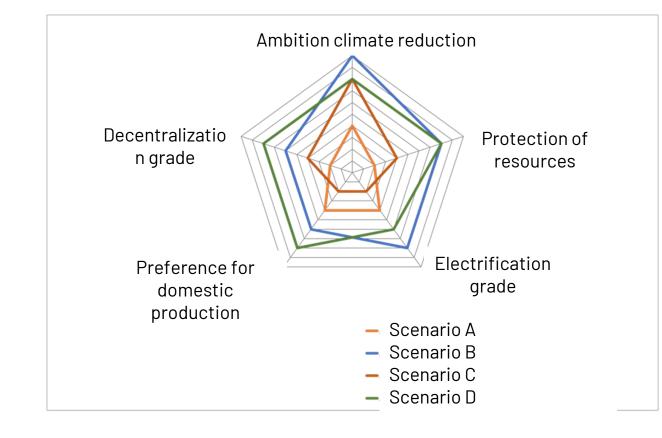


### **Scenarios**

#### Scenario A:

- reference, follows the national development plan for the electricity system (NEP 2019 Scenario B)
- Greenhouse gas reduction by 85% until 2050

#### Scenario B


Aims to contribute to the 1.5°C target

#### Scenario C

- Aims to contribute to the 2.0°C target
- European oriented electricity system

#### Scenario D

- Aims to contribute to the 2.0°C target
- Decentralized oriented electricity system



## **Sustainability assessment**

| No. | Criterion                           | Scenario A | Scenario B | Scenario C | Scenario D |
|-----|-------------------------------------|------------|------------|------------|------------|
| 1   | Air pollutant emissions             | 0.00       | 0.69       | 1.00       | 0.60       |
| 2   | Optical and noise emissions         | 0.82       | 1.00       | 0.22       | 0.00       |
| 3   | Energy import dependency            | 0.47       | 0.91       | 1.00       | 0.00       |
| 4   | Energy poverty                      | 0.35       | 1.00       | 0.52       | 0.00       |
| 5   | Employment effects                  | 0.00       | 1.00       | 0.55       | 0.11       |
| 6   | Distributive justice                | 0.00       | 1.00       | 0.19       | 0.19       |
| 7   | Financial participation             | 0.00       | 0.92       | 0.74       | 1.00       |
| 8   | Land use conflict due energy plants | 0.04       | 0.31       | 0.00       | 1.00       |
| 9   | Direct land use of energy system    | 1.00       | 0.03       | 0.00       | 0.81       |
| 10  | Resource use non-renewable energy   | 0.00       | 0.86       | 1.00       | 0.51       |
| 11  | Resource use non-energy             | 0.61       | 0.39       | 1.00       | 0.00       |
| 12  | Contribution to climate change      | 0.00       | 0.89       | 1.00       | 0.65       |
| 13  | Eutrophication                      | 0.55       | 1.00       | 0.00       | 0.00       |
| 14  | Acidification                       | 0.38       | 1.00       | 0.09       | 0.00       |
| 15  | Regional value added                | 0.00       | 0.84       | 0.50       | 1.00       |
| 16  | Regional participation              | 0.00       | 1.00       | 0.50       | 1.00       |
| 17  | Landscape                           | 1.00       | 0.31       | 0.44       | 0.00       |
| 18  | Human rights                        |            |            |            |            |

Note: 1 := best performance; 0 := worst performance

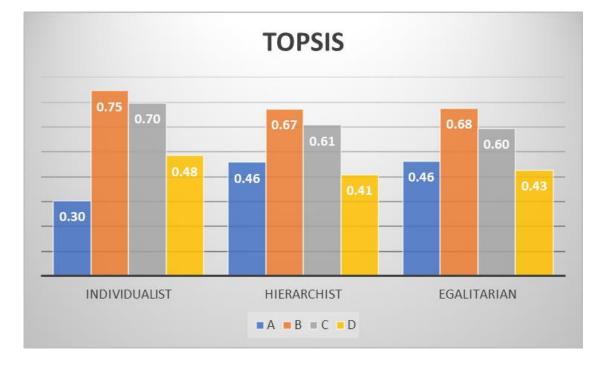
## Weighting

#### Individualist

- Not accepting social pressure
- Weak solidarity beyond rules

#### Hierarchist


- High relevance of social order
- Strong "tribal" identity


#### Egalitarian

- Strong solidarity and cooperation
- Strong peer pressure

| No. | Criterion                           | Weights       |             |             |  |  |
|-----|-------------------------------------|---------------|-------------|-------------|--|--|
|     |                                     | Individualist | Hierarchist | Egalitarian |  |  |
| 1   | Air pollutant emissions             | 3.30          | 7.70        | 9.00        |  |  |
| 2   | Optical and noise emissions         | 8.70          | 7.70        | 3.00        |  |  |
| 3   | Energy import dependency            | 9.20          | 5.50        | 3.20        |  |  |
| 4   | Energy poverty                      | 6.50          | 4.40        | 4.50        |  |  |
| 5   | Employment effects                  | 9.20          | 5.50        | 3.20        |  |  |
| 6   | Distributive justice                | 0.90          | 2.20        | 10.30       |  |  |
| 7   | Financial participation             | 9.20          | 5.50        | 3.20        |  |  |
| 8   | Land use conflict due energy plants | 10.50         | 7.70        | 2.60        |  |  |
| 9   | Direct land use of energy system    | 3.50          | 7.70        | 6.90        |  |  |
| 10  | Resource use non-renewable energy   | 3.10          | 5.50        | 8.60        |  |  |
| 11  | Resource use non-energy             | 3.50          | 9.90        | 13.70       |  |  |
| 12  | Contribution to climate change      | 2.60          | 6.60        | 5.20        |  |  |
| 13  | Eutrophication                      | 2.60          | 6.60        | 5.20        |  |  |
| 14  | Acidification                       | 10.50         | 4.40        | 0.90        |  |  |
| 15  | Regional value added                | 2.60          | 2.20        | 3.90        |  |  |
| 16  | Regional participation              | 6.50          | 4.40        | 4.50        |  |  |
| 17  | Landscape                           | 6.50          | 4.40        | 4.50        |  |  |
| 18  | Human rights                        | 1.30          | 2.20        | 7.70        |  |  |
|     | Sum                                 | 100           | 100         | 100         |  |  |

### **MCDA based sustainability assessment**





The proximity of a value of an indicator to the best-possible value determines the assessment value (using Euklidian distance)



## Use for SP 3

### **Use for SP 3**

#### Huge amount of energy scenarios in Europe

#### Main questions:

- Climate-neutrality achievable? When and where?
- Future energy mix / electricity mix?
- Import (from where?) vs. domestic production of hydrogen?
- But, the sustainability of the future energy systems are seldom questioned

#### Idea for SP 3:

- Developing a proposal for a general MCDA-based sustainability assessment
- Conducting a MCDA-based sustainability assessment of a small set of energy scenarios

#### Approach

- Identification a set of comprehensive indicators using SDG Energy as a reference
- Using a small set of scenarios assessing the indicators
- Identification and using an appropriate MCDA-approach conducting a sustainability assessment
- Output: a report and (at least) one paper





witold-roger.poganietz@kit.edu

