

Padova, Italy

26.10.2023

Padova conference 2023

The role of building mass upgrade in the energy system transition - A Norwegian case study

Eva Rosenberg, Pernille Seljom, Kristina Haaskjold kristina.haaskjold@ife.no

Renewable energy systems Institute for Energy Technology (IFE)

Background and motivation

- Energy efficiency
 - Lowers demand
 - Lowers energy costs of consumers
- Buildings in Norway
 - 22% of final energy demand (2020)
 - Large share old buildings

Research question: What is value of **building mass upgrade** in the low-carbon energy system transition?

Norwegian energy system model

IFE-TIMES-Norway (2018-2055)

- Long-term optimization model
- Investments & operation to meet demand future demand for energy services
- Covers entire energy system
 - Sector coupling
 - Competition between technologies and energy carriers
 - Detail representation of end-use

Figur: IEA, NETP 2016

4 **IFE**

Building mass upgrade measures

• NVE/ Multiconsult 2021 study: Potentials, lifetime and costs

13 building mass upgrade measures

- 1. Insulation of walls
- 2. Insulation of roof
- 3. Insulation of floor
- 4. New windows and doors
- 5. Lower indoor temp., nights & weekends
- 6. Improved heat recovery in ventilation
- 7. Improved power efficiency
- 8. Improved ventilation regulation
- 9. Lighting regulation
- **10.**Energy efficient lighting
- **11**.Automatic sun protection
- 12. Demand controlled ventilation
- 13. Energy management systems

13 building type categories

- 1. Single-family houses
- 2. Multi-family houses
- 3. Kindergarten
- 4. Offices
- 5. Schools
- 6. University/higher education
- 7. Hospitals
- 8. Nursing homes
- 9. Hotel
- 10.Sports
- 11.Wholesale and retail
- 12.Culture
- 13.Light industry / workshop

More information: https://www.nve.no/energi/energisystem/energibruk/energieffektivisering/

Building mass upgrade measures

Potential split by

- 4 technical building standards
- 5 electricity spot regions
- Endogenous investment options
 - ~ 3800 options included
 - Rank of implementation order based on LCOE

Commercial En.Eff. Pot. 47% Demand Multi-family En.Eff. Pot. 64% Demand Single-family En.Eff. Pot. 57% Demand 25 30 0 5 10 15 20 35 40 45 TWh/year

Max energy efficiency potential in 2025

Space heat El. Spec. Hot water

Model cases

• Case: On/ off building mass upgrade, building applied PV & flexible EV charging

Case	Building mass upgrade	Building applies PV	Flexible EV charging
Base			
Eff	Х		
PV		Х	
Flex			X
All	Х	х	х

Results

Building mass upgrades lower energy transition cost

IFE

8

• Building mass upgrade lower the cost of the energy transition more than PV and Flex

IfE 9 Investments in building mass upgrade is a techno-economic solution but depends on energy behaviour

Energy management

Improved heat recovery ventilation
Lower indoor temp., nights & weekends
New windows & doors
Floor insulation
Roof insulation
Wall insulation
Space heating

Building mass upgrades lowers peak electricity demand and price

Figure: Winter 2050

- Peak demand reduction: 17%
- Larger impacts on distribution grid level

NO1	NO2	NO3	NO4	NO5
11%	10%	21%	20%	20%

Main takeaways

Building mass upgrades lowers energy costs of buildings

- Lower demand
- Lower peaks →
 lower distribution tariffs
- Lower electricity price
- = Lower energy bill

Figure: NO1 Residenitial single family houses

IFE | 13

Main takeaways

- Techno-economic implementation of building mass upgrades significantly lowers
 - cost of the energy transition
 - energy costs of end-users
- There is a mismatch between techno-economic and real-world implementation

Necessary steps

- understand drivers and barriers for building mass upgrade
- design policies that enables the potential